MIDTERM INTRODUCTION TO LOGIC

December 9th, 2013

- Part A consists of 3 exercises.
- \blacksquare Part B consists of 2 exercises.
- Philosophy students only need to do part A of the exam.
- I Non-philosophy students should do both part A and part B.
- Only write your student number at the top of the exam. Also put your number at the top of any additional pages.
- Put the name of your group at the top of the exam.
- I Use a blue or black pen (so no pencils, red pen or marker).

GOOD LUCK!

Part A

A1: translation into propositional logic (24 points) Translate the following sentences to *propositional logic*. Atomic sentences are represented by uppercase letters. Do not forget to provide the translation key.

- a. If you are small and wear a pointy hat you are a gnome, but if you are small and have a lot of hair on your feet you are a hobbit.
- b. The human body has enough oxygen only if the heart pumps blood around and the lungs work.
- c. I will not stop smoking if and only if it is not prohibited in all bars.

A2: translation into first-order logic (24 points) Translate the following sentences to *first-order logic*. Do not forget to provide the translation key.

- a. Aarav and Yasmin both love Greg unless Greg loves Hans.
- b. Only if John and Ananya are siblings, then Pranav and Shreya are not.
- c. If Bill is not being nice and Mary is not having a good time, then Juhani takes him home or calls a taxi for him.

A3: formal proofs (32 points) Give formal proofs of the following inferences.

a.	$\lfloor (P \land Q \land R) \to S$	c.	$ \ \ \ \ \ \ \ \ \ \ \ \ \$
	$P \to (Q \to (R \to S))$		$a = b \to \neg P(b)$
b.	$\neg (P \lor Q)$	d.	
	$\[P \leftrightarrow Q\]$		$\boxed{P \to ((Q \lor \neg P) \to P)}$

Part B

B1: Normal forms of propositional logic (20 points)

- a. Provide a negation normal form (NNF) of: $\neg((P \lor Q) \land \neg \neg R)$
- b. Provide a conjunction normal form (CNF) of: $\neg(P \land \neg Q) \to \neg(S \lor \neg R)$

B2: Set theory (20 points) Given the following three sets $A = \{1, 2, 3\}$, $B = \{2, 3, 4, 6\}$ and $C = \{2, 3, 5, 6, 7\}$. For each of the following statements, determine whether it is true or false. You are not required to explain the answer.

a. $5 \in A \cap B \cap C$	f. $(A \cup B) \setminus \emptyset \neq \emptyset$
b. $(B \cup A) \setminus C \neq A \setminus B$	g. $(A \cap B) \subseteq C$
c. $6 \in C \cup \emptyset$	h. 1 $\not\in (A \cup B) \cap (C \cup B)$
d. $A \cup B \subseteq B \cap C$	i. $C \setminus (C \cap B) \subseteq (A \cup B)$
e. $(A \setminus B) \setminus C = \{1\}$	j. $6 \notin (A \setminus B) \cap C$

Midtern A_1 a Translation key S: You are small. P: You wear a pointy hat . G: You are a guome H: You have a lot of heir on your feet B: You are a hobbit Translation: ((SAP) -> G) ~ ((SAH) -> B) O: The human body has enough axy yer. H: The heart pumps blood around. 6 Translation key L: The lungs work. Translorion: O-> (HAL) c Translar ion hay S: I will stop smaling. P: Suching is prohibited is all bars. Translation: 7 Ses 7 P

Midtern A_2 a Tronglation lieg: a: Aarav y: Vashin g: Grey h: Hors L(x,y): x loves y Translation: (L(a,g) 1 L(y,g)) v L(g,h) b Translation key: j: John a: Anonyo p: Pronou s: Shreyz S(x,y): x and y are siblings Translation: 7 S(p,s) -> S(j,a) c Translation leg: b: Bill m: Mary j: Juhni N(x): X is nice G(x): x is having a good time Hlx, y): X takes y home T(x, y): x colls à texi for y $Translation: (\neg N(b) \land \neg G(m)) \rightarrow (H(j,b) \lor T(j,b))$

Midterm A3 $a \vdash I. (P_A Q_A R) \rightarrow S$ $\perp L_2. P$ L3.Q 5. PAQAR 6. S 1 Intro (2,3,4) \rightarrow Elin(i,s) $\begin{array}{c} 1 & \mathcal{R} \rightarrow \mathcal{S} \\ 8 & \mathcal{Q} \rightarrow (\mathcal{R} \rightarrow \mathcal{S}) \end{array}$ -> Inro (4-6) -> Iuro (3-7) q. $B(Q \rightarrow (R \rightarrow S))$ -> Intro (2-8) _1. 7 (PvQ) 6 L2.P 3. PrQ V Intro (2) L Inro (1,3) 4. L 5.Q LElin(4) _6. Q 7. PvQ 8. L v Inro (6) L Inoro (1,7) $\perp Elim(8)$ 10. PeoQ ↔ Intro (2-5, 6-q)

Midny A3 [1. 7 (a = a 1 P (u)) C 12. a=b L 3. P (a) 4. a=a = Ihro $\int \frac{5}{6} \frac{d}{d} = \alpha \Lambda P(\alpha)$ 1 Irro (3,4) + Inro (15) 7. 1 P (a) 8. 7 P (b) 7 Inro (3-6) = Elin (2,7) -, Inno (2-8) q=b → 7P(b) d _1. P 1-2.QV7P 3.P Reir (1) $|4.(QviP) \rightarrow P$ -> Intro (2-3) 5. $P \rightarrow ((Q, \neg P) \rightarrow P)$ -> Irro (1-4) Z

Midtern Bi $\neg ((PvQ) \land \neg R)$ a - ((PVQ)AR) - (PvQ)v-R ()(PAIQ)VIR b. (PARQ) > 1 (SURR) (PAIQ) v ~ (SviR) $\langle \boldsymbol{\Xi} \rangle$ (PAIR) VI(SVIR) $\langle \boldsymbol{\Theta} \rangle$ (PAIQ) V (ISAIR) (PARQ) V (2SAR) $(Pv(\tau S_{\Lambda}R)) \wedge (\tau Qv(\tau S_{\Lambda}R))$ \Rightarrow (PVIS) A (PVR) A (IQV(ISAR)) $\langle \rangle$ (PUIS) A(PUR) A (IQUIS) A (IQUR)

Midtern
Ra
$ \Sigma^{2} $
h twin
c true
d file
e true
ftrue
g true
t true
L'Estre
J. Ville